Linearity Identification for General Partial Linear Single-Index Models
نویسندگان
چکیده
منابع مشابه
Partial linear single index models with distortion measurement errors
We study partial linear single index models when the response and the covariates in the parametric part are measured with errors and distorted by unknown functions of commonly observable confounding variables, and propose a semiparametric covariate-adjusted estimation procedure. We apply the minimum average variance estimation method to estimate the parameters of interest. This is different fro...
متن کاملEstimation for a Partial-linear Single-index Model
In this paper, we study the estimation for a partial-linear single-index model. A two-stage estimation procedure is proposed to estimate the link function for the single index and the parameters in the single index, as well as the parameters in the linear component of the model. Asymptotic normality is established for both parametric components. For the index, a constrained estimating equation ...
متن کاملGeneralized Partially Linear Single-Index Models
The typical generalized linear model for a regression of a response Y on predictors (X;Z) has conditional mean function based upon a linear combination of (X;Z). We generalize these models to have a nonparametric component, replacing the linear combination T 0 X + T 0 Z by 0( T 0 X) + T 0 Z, where 0( ) is an unknown function. We call these generalized partially linear single-index models (GPLSI...
متن کاملVariance function partially linear single-index models
We consider heteroscedastic regression models where the mean function is a partially linear single-index model and the variance function depends on a generalized partially linear single-index model.We do not insist that the variance function depends only on the mean function, as happens in the classical generalized partially linear single-index model.We develop efficient and practical estimatio...
متن کاملEstimation and Testing for Partially Linear Single-index Models.
In partially linear single-index models, we obtain the semiparametrically efficient profile least-squares estimators of regression coefficients. We also employ the smoothly clipped absolute deviation penalty (SCAD) approach to simultaneously select variables and estimate regression coefficients. We show that the resulting SCAD estimators are consistent and possess the oracle property. Subsequen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Problems in Engineering
سال: 2016
ISSN: 1024-123X,1563-5147
DOI: 10.1155/2016/3537564